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Absbract. New series data are examined for the percolation probability P(p) for site and 
bond mixtures in two dimensions. It is concluded that the data are reasonably consistent 
with the hypothesis that P(p)=B(q , -q)B as q+qc- with ,S a dimensional invariant, 
j3 = 0.138*0.007 in two dimensions. Estimates of the critical amplitude B are also given. 
Series data for the mean cluster size  S ( p )  in the high density region are examined and it is 
tentatively concluded that S ( p )  = C(q,-q)-" as q + qc- and that the data are not inconsis- 
tent with the hypothesis y'= y. 

1. Introduction 

In this paper we examine new series data for the percolation probability and mean 
cluster size in the high density region ( p  > pc) for site and bond mixtures in two 
dimensions. We have introduced the problem in companion papers (Sykes and Glen 
1976, Sykes et al 1976a, b, to be referred to as 1-111); the new data are given in I11 
(appendix). Explicitly we investigate the hypothesis (Rudd andFrisch 1970, Sykes et a[ 
1974) that 

0) = N ? c -  dP, 4 + 9c- (1.1) 

S(P) = c'(qc-q)-yI 4 + qc-. (1.2) 

and 

fie investigation of (1.1) by Rudd and Frisch was inconclusive and dependent on the 
various methods of analysis employed. 

We have found the high density series to be poorly behaved, particularly for S ( p ) .  If 
bad therefore the extrapolation range, is small only a few coeficients are available; if 
qcisl@ge more coefficients are available but the extrapolation range is correspondingly 
he. We have found it very difficult to draw precise conclusions and have therefore 
@&ed O W  present account to a brief summary of the standard Pad6 approximant 
"lysis. 

%esInalysis 

In this section we use Pad6 approximants to study the high density expansions for the 
LrQ'abonProbability and mean she. The procedure has been described in detail by 
Canntand Guttmann (1974) in theb review of series analysis techniques in general. 
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Only one point requires further discussion. The series for P ( p )  begins like 
e P(p)=l-q -... 

where 8 = (T + 1 for the site problem, 8 = 2a for the bond problem and ff + 1 equals the 
lattice coordination number. Hence 

(d/dq) In P = -8qe-' -. . . 
so that the first non-zero coefficient corresponds to a relatively high power of the 
expansion variable. In such cases it seems sensible to examine the [n+j/n]  Pad6 
approximants for j = 0, f 1 to the series for both (d/dq) In P and q-@-''(d/dq) In p. F~~ 
the latter function this corresponds to the [n + j / n ]  approximants to the series for 
(d/dq) In F, with j = 8 -2,8 - 1,8. In general we have found this sequence of diagonals 
to converge slightly better. 

On forming Dlog Pad& approximants to the series for P ( p ) ,  it is found that the 
number and location of singularities inside or on the circle 191 = qc varies widely from 
problem to problem. However, with the exception of the HC(B) problem, it appears that 
the dominant singularity always lies on the negative real q axis at q =-qo, say, with 
qo< qc. Consequently, the series coefficients ultimately alternate in sign. For the HUB) 
problem the physical singularity at q = qc seems to determine the radius of convergence 
and correspondingly the series coefficients are all of one sign; although the ratiomethcd 
(see Gaunt and Guttmann 1974) is applicable in this case, it is not very useful becauseof 
interference from a complex conjugate pair of weak singularities which apparently lie 
on the circle of convergence 191 = qc in the left half of the q plane. 

For series such as these, experience tells us that we should not expect rapid 
convergence of the approximants in the vicinity of qc. This is confirmed by the Dlog 
Pad& estimates of qc and p (given by the poles and residues respectively) for the HC(B), 

SQ(B), T(B) and T(S) problems, for which qc is known exactly (see 11). The results are 
presented in tables 1-4 respectively. The last few estimates are reasonably close to the 

Table 1. Dlog Pad6 estimates of qc (and p )  for the honeycomb bond problem. 

n [n+2/n] [ n  +3/nI [n+4/nl 

3 -  0.3400 (0.1155) 0.3444 (0.1285) 
4 0.3526 (0.1607) 0.3479 (0.1406) 0.3481 (0.1417) 
5 0.3481 (0.1415) 0.3479 (0.1407)$ 0.3472 (0.1378) 
6 0.3467 (0.1350) 0.3468 (0.1355) - 
i Defect on negative axis. 

Table 2. Dlog Pad6 estimates of qc (and p )  for the simple quadratic bond Problem. 

n [n+4/n]  r n + v n i  [n+6/nl / 

d 

0.4819 (0.0881) 
0.4816 (0.0876)f 

5 0.5013 (0.1458) 0-5266 (0.3531) 0.4986 (0.1323). 
6 0.5070 (0.1715) 0.5030 (0.1512) 0.5006 (0.1402); 

3 0.4402 (0.0372) 0.4488 (0.0443)r 
4 -  0.4842 (0.0930) 

/ 7 0.5183 (0.2331)t 

I' Defect on positive axis. Defect on negative axis. 
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Table 3. Dlog Pad6 estimates of qc (and 8 )  for the triangular bond problem. 

n [n+8/n] [n +9/nl [ n  + 10/n] 

727 

j 0.6106 (0.0433) 0.6127 (0.0456): 0.6298 (0.0704) 
6 -  - 0.6626 (0.1877) 

0.6442 (0.1041) 7 -  - 
8 -  0.6496 (0.1238) 0.6538 (0.1444) 
9 0.6520 (0.1348) 0.6380 (0.0949)7 0.6566 (0.1615): 

10 0.6540 (0.1451) 0.6554 (0.1531): 
~~ ~~ 

7 Defect on positive axis. i Defect on negative axis. 

Table 4. Dlog Pad6 estimates of qc (and j3) for the triangular site problem. 
~ ~~~ 

n [n+4/n] [n  +5/nl [n +6/nl 

4 -  0.4235 (0.0233)§ 0.4890 (0.1004) 
5 05351 (0.4234)s 0.4916 (0.1074) 0.4876 (0.0972)t 
6 0.4977 (0.1279) 0.5152 (0.2497) 0.4936 (0.1 126)s 
7 05000 (0.1373) 0.5002 (0.1384) 0.5008 (0.1410) 
8 0.4998 (0.1365)1 0.5004 (0.1390): 

t Defect on positive axis. t Defect on negative axis. § Defect in complex plane. 

exact value of qc in all cases, but the sequences exhibit small irregularities with no 
definite trend. Following the procedure we used in I1 for analysing the low density 
mean size series, which exhibited similar behaviour, we plot the residues against the 
position of their corresponding poles for each of the four problems. As in 11, the last few 
estimates are found to define fairly accurately a single smooth curve for each problem 
no matter which sequence is chosen. The residue which would be obtained if a pole 
were located exactly at qc can then be read off from the plot and in this way we obtain 

p = 0*138*0*007 (2.1) 

as an overall estimate for the four problems. Corresponding results for the HCW and 
SON problems are consistent with (2.1) only with much larger uncertainties; these arise 
(Q)from the uncertainties in qc (see 11) and (b )  because there are no usable poles having 
4% so that the plots must be extrapolated up to qc. 

h h u s  alternative procedures have also been tried; for example, by evaluating 
Padi approximants to the series for (q  - q,)(d/dq) In P(p) at q =qc The estimates of 
soobtained are presented in table 5 for the HC(B) problem and are quite typical. We 

Table 5. Pad6 estimates of p for the honeycomb bond problem using the (q -qc) (dldq) 
In P ( p )  series and the exact value of qe. 

n [n+2/n] [n +3/nl [n +4/nI  

3 0.28347% 0.1397 0.1384 
4 0.1375 0.1382 0.1390f 
5 0.1379: 0.13809 0.1381 
6 0.1379tk 0.1396 

7 Defect on positive axis. $' Defect on negative axis. 
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have also analysed the series obtained by transforming to some new expansion variable 
in which the physical singularity is closest to the origin (see Gaunt and Gufimann 1 9 7 ~ )  
but while finding ample supportative evidence, we have been unable to improve on (2.1) 
and accordingly adopt it as our find estimate. 

We have used the exact or best estimates of qc together with (2.1) to estimate 
critical amplitudes B defined by (1.1). Two methods have been employed: the 
calculation of the residues at the pole close to pc of the Pad6 approximants to the 
for [p(p)]-’’B and also evaluation of the Pad6 approximants to the series for 

( q c - q ) [ ~ ( p ) ] - l / P  at 9 = qC. Results obtained by these methods are in good agreement 
leading to final estimates of B for the bond problems of: 

[ 1.533*0-003 HCW 

(2.2) 

and for the site problems of: 

1.530st 0-009 HCW 

B = 1.530+-0*015 sQ(s) (2.3) i 1.558 *O-002 ‘US). 

The uncertainties in pc (where applicable) and in p each introduce additional uncertain- 
ties in B of the order of 1 Yo and 3% respectively. (Larger values of B would result from 
larger values of both pc and p.) For the bond and site problems the amplitudes are seen 
to increase monotonically with increasing lattice coordination number; the amplitudes 
for the H c ~ )  and SQ(S) problems are probably very close to one another. In addition,it 
Seems that on a given lattice the amplitude for the bond problem is always greater than 
for the corresponding site problem. All the above features are exhibited by the Bethe 
approximation (Fisher and Essam 1961); in this approximation the amplitudes for the 
HC(S) and SQW problems are exactly equal. 

Conesponding calculations have been performed on the high density expansions for 
the mean size. These series are even more poorly behaved than are the series for the 
percolation probability and the estimation of y’ is very uncertain. An analogous 
situation arises in the analysis of low temperature expansions for the Isingmodel. Thus, 
although the series for the spontaneous magnetization, which is the analogue of the 
percolation probability (Kasteleyn and Fortuin 1969, Essam 1972), are notPadcularly 
well behaved, they do enable estimates of p to be made with reasonable confidence; 
however, the zero-field susceptibility series which are analogous to the mean size seneS 
(Essam 1972) yield only very tentative estimates of 7’ (Gaunt and SYkeS 1973)‘ 
Accordingly we give only a very brief account of the analysis for the T(B) 
other bond and site problems lead to similar conclusions. 

In table 6(a) we give estimates of y’ obtained by evaluating Pad6 aPProximants 
the series for (qc-q)(d/dq) In S ( p )  at q = qc. These results, which are not con- 
verged, indicate an exponent between 1-25 and 1.75. According to scaling g that 
(Kasteleyn and Fortuin 1969, Essam and Gwilym 1971) we expect from 
Y’.: 7-2.43. TO study this rather unexpected result further we have investigated 
CrltlCal behaviour of various functions related to S ( p ) .  For example, we note that the 
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Table 6. Pad6 estimates of y' for the triangular bond problem using the (9.14) (d/dq) 
in S'h) series and the exact value of qc. In (a )  S'(p)  = S ( p ) ,  while in (b)  S'(p) =pfS@). 

2 
3 
4 
5 
6 
7 
8 
9 

10 

0.9001 
4.0708'i 
1.2003 
1.1150t 
1.4869 
1.2311 
1.3849 
1.37251: 
1.23997' 

1.0634 
1.2177 
1.21571 
1.26731 
1.3818 
1.3373 
1.3574 
1.3322t 

1-4121 
1.1987 
0.95827' 
1.3942 
1.39721 
1.3585 
1.35851: 
1.7459 

2.0572 
8.6442t 
2.1876 
2.171 9t 
2.2574 
3.3361t 
2.0951 
2.0539 
2.05161: 

1.30721 
2.1826 
2.18211 
2.1831 
2.2218 
2,1337 
2.1707t 
2.0448 

2.6634 
2.1875 
2.1717t 
2.2506 
2.3560t 
2.0888 
2-0380 
2-0358'F 

7' Defect on positive axis. 1: Defect on negative axis. (i Defect in complex plane. 

definition of S ( p )  given by I11 (1.11) contains in the denominator the function pf with 
critical behaviour 

Pf = P (  1 - P) - pc - P c B  ( q c  - SIB> 9 + qc- .  (2.4) 

Hence the function in the numerator of I11 (1.11) carries the singularity of S ( p )  as 
q+qc-. We have used this function, namely pfS(p), to calculate alternative Pade 
estimates of y' and these are presented in table 6(b) .  These results indicate a much 
larger exponent around 2.0 to 2.1. Although we still do not have exponent symmetry 
(y=y'), such a relatively small discrepancy could easily disappear if longer series were 
available. Various methods aimed at improving the rate of convergence have been 
hed, including transformation of variables, but without notable success. 

To estimate the critical amplitudes C', we have assumed exponent symmetry y = y' 
and followed procedures analogous to those already described for the amplitude B. The 
Wnvergence is so poor that the following estimates for C/@ should be regarded as 
order-of-magnitude estimates only: 

C/C'= 2.4 HC(B), 1.9 SQ(B), 1.3 T(B) (2.5) 
and 

c/C' - 3.4 HC(S), 3.9 SQ(SJ, 2-1 T(S). (2.6) 
In the Bethe approximation C/@ = 1 for both bond and site problems. 

3 3  Conciasiom 

The high density expansions are much more difficult to extrapolate than the corres- 
ponding low density expansions. W i l e  the methods described in I11 could be used to 
add one or two more coefficients in all cases, we have not thought this worthwhile 
b"awofthe poor convergence already experienced. Although we have found it very 
' y t t O  draw precise conclusions, all the available data have been found reasonably 
QBMentwith the hypothesis that the mean size exponent y' and percolation probabil- 

0 are dimensional invariants in two dimensions. 
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Our final estimate of p = 0.138 f 0.007 replaces our preliminary estimate of 
e =0.14*00.03for the~(s)problem (Sykes etal1974).Thecentralvdueof~ =0.138& 
very close to 5 = 0-138888 . . . but != 0.1428 . - . is well within the quoted uncertain- 
ties. As usual the uncertainties are not strict error bounds but just represent a 
subjective assessment of the rate of convergence of the available numend data (see, 
for example, Gaunt and Guttmann 1974). With such Padb behaved series it is difficult 
therefore to rule out completely an exponent of about H, although such a possibfiQrdoes 
seem rather unlikely. 

We have been unable to estimate the exponent y’ with any precision. &hough 
exponent symmetry y’ = y is not ruled out by OUT results, if it should fail then it seem 
likely that y’ < y. 
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